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The objective of this paper is to discuss and analyse the accuracy of various velocity
formulations for water waves in the framework of Boussinesq theory. To simplify
the discussion, we consider the linearized wave problem confined between the still-
water datum and a horizontal sea bottom. First, the problem is further simplified
by ignoring boundary conditions at the surface. This reduces the problem to finding
truncated series solutions to the Laplace equation with a kinematic condition at the
sea bed. The convergence and accuracy of the resulting expressions is analysed in
comparison with the target cosh- and sinh-functions from linear wave theory. First, we
consider series expansions in terms of the horizontal velocity variable at an arbitrary
z-level, which can be varied from the sea bottom to the still-water datum. Second,
we consider the classical possibility of expanding in terms of the depth-averaged
velocity. Third, we analyse the use of a horizontal pseudo-velocity determined by
interpolation between velocities at two arbitrary z-levels. Fourth, we investigate three
different formulations based on two expansion variables, being the horizontal and
vertical velocity variables at an arbitrary z-level. This is shown to have a remarkable
influence on the convergence and to improve accuracy considerably. Fifth, we derive
and analyse a new formulation which doubles the power of the vertical coordinate
without increasing the order of the horizontal derivatives. Finally, we involve the
kinematic and dynamic boundary conditions at the free surface and discuss the linear
dispersion relation and a spectral solution for steady nonlinear waves.

1. Introduction
In its classical form, Boussinesq wave theory represents a shallow-water approxim-

ation to the fully dispersive and nonlinear water wave problem, and the equations
incorporate a balance between lowest-order dispersion and lowest-order nonlinearity
(see e.g. Boussinesq 1872; Mei & Méhauté 1966; Peregrine 1967; Madsen & Mei
1969). The original use of the Boussinesq equations concentrated on the propagation
of weakly nonlinear solitary waves (e.g. Madsen & Mei 1969), but in the late 1970’s,
use of the equations started to become popular in coastal engineering and the focus
shifted towards regular cnoidal waves and irregular waves. With this shift of interest
the underlying limitations in linear dispersion and nonlinearity for shorter waves
became of concern.
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The accuracy of linear dispersion and the possibility of improving it in the
framework of Boussinesq theory has received considerable attention (see e.g. Benjamin,
Bona & Mahony 1972; Dingemans 1973; Whitham 1974; Witting 1984; Madsen,
Murray & Sørensen 1991; Nwogu 1993; Madsen & Schäffer 1998). Other formulations
(e.g. Serre 1953; Su & Gardner 1969; Wei et al. 1995; Madsen & Schäffer 1998; Agnon,
Madsen & Schäffer 1999; Wu 1999; Gobbi, Kirby & wei 2000; Wu 2001) incorporate
so-called ‘full nonlinearity’, which means that they include all nonlinear terms up to
the retained order of dispersion, with the objective of improving nonlinear properties
such as amplitude dispersion and wave–wave interaction. Of these attempts, the
method presented by Agnon et al. (1999) provides the most direct way of achieving
the same accuracy in nonlinear properties as in linear properties. The procedure is
based on an exact formulation of the boundary conditions at the free surface and at
the sea bottom combined with an approximate solution to the Laplace equation given
in terms of truncated series expansions from the still-water datum. As a result, their
equations provide accurate linear and nonlinear properties for wavenumbers times
the water depth, kh, up to 6.

Having achieved a significant improvement in linear and nonlinear wave properties
as in the various papers listed above, one might expect that the underlying velocity
fields are of similar quality. This is, however, not neccessarily the case. Boussinesq
formulations are generally based on a polynomial approximation of the vertical
variation of the velocity field, but surprisingly few papers (e.g. Wei et al. 1995; Gobbi
et al. 2000; and Kennedy, Kirby & Gobbi 2002) have actually analysed the accuracy
of these approximations. Of these, the profile provided by Gobbi et al. (2000) is
by far the most accurate and it has been shown to be applicable for linear waves
up to kh ≈ 5, while most other Boussinesq profiles become hopelessly inaccurate for
kh ≈ 1.5 or less.

In the present work, we discuss and analyse the accuracy of various velocity
formulations in the framework of Boussinesq theory. In order to focus on the quality
of the polynomial approximations, we simplify the problem to linear waves on
a constant depth. Furthermore, the bulk of the discussion does not consider the
imbedded linear dispersion relation, which means ignoring the linearized kinematic
and dynamic surface boundary conditions. What remains is the problem of finding
accurate truncated series solutions to the Laplace equation with the kinematic
condition at a horizontal sea bed. Most formulations are investigated in a first-order
form (with third-order derivatives), a second-order form (with fifth-order derivatives)
and in a fourth-order form (with ninth-order derivatives). In § 2, we define the
problem and summarize the exact infinite series solution of Madsen, Bingham &
Liu (2002a) and Madsen, Bingham & Schäffer (2002b), which contains most other
classical velocity formulations as subsets. In § 3, we discuss many of the classical
formulations e.g. Peregrine (1967), Nwogu (1993) and Gobbi et al. (2000). All of
these are expanded in terms of a horizontal velocity variable defined at the still-water
level, the sea bottom, the mid-depth or depth-averaged. We demonstrate that most
of these formulations are restricted by a finite convergence radius. We show that
in contrast to these methods, the recent formulations by Agnon et al. (1999) and
Madsen et al. (2002a, b) have unlimited convergence radius, which makes it possible
to achieve higher accuracy. We discuss and analyse three different methods from
Madsen et al. (2002b) in § 4, with applicability up to kh ≈ 5, 6 and 12, respectively.
In § 5, we derive and analyse a new velocity formulation which provides further
improvement of accuracy and applicability. In § 6, we involve the linearized kinematic
and dynamic boundary conditions at the free surface and discuss the quality of the
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imbedded linear dispersion relation. In § 7, we involve the fully nonlinear surface
boundary conditions and discuss the accuracy of the velocity and pressure profiles for
the case of strongly nonlinear steady waves. A summary and conclusions are given
in § 8.

2. The governing equations and an exact infinite series solution
The Laplace equation with appropriate boundary conditions governs the irrota-

tional flow of an incompressible inviscid fluid bounded by the sea bed and a free
surface. We simplify the fully nonlinear water wave problem on an uneven bottom to
a linear problem on a constant depth. A further simplification is achieved by initially
ignoring the kinematic and dynamic boundary conditions at the free surface in
order to make the analysis independent of the linear dispersion relation. A Cartesian
coordinate system is adopted with the x-axis and y-axis located on the still-water
plane and with the z-axis pointing vertically upwards.

2.1. An infinite series solution of the Laplace equation on a constant depth

The starting point for the formulation is the Laplace equation

Φzz + ∇2Φ = 0, (1)

with the kinematic boundary condition at the horizontal sea bed,

Φz = 0, z = −h. (2)

Here Φ is the velocity potential which is related to the velocity components through

u ≡ ∇Φ, w ≡ Φz, ∇ ≡
(

∂

∂x
,

∂

∂y

)
, (3)

and ∇ is the two-dimensional gradient operator.
Recently, Madsen et al. (2002a, b) derived an exact solution to the Laplace equation

(1) expressed in terms of

u(x, y, z, t) = cos((z − ẑ)∇)û + sin((z − ẑ)∇)ŵ, (4a)

w(x, y, z, t) = cos((z − ẑ)∇)ŵ − sin((z − ẑ)∇)û, (4b)

where û, ŵ are the velocity components at an arbitrary level z = ẑ, and where ẑ is
assumed to be a constant fraction (σ ) of the still-water depth (h). The cos- and
sin-operators are infinite Taylor series operators defined by

cos(λ∇) ≡
∞∑

n =0

(−1)n
λ2n

(2n)!
∇2n, sin(λ∇) ≡

∞∑
n= 0

(−1 )n
λ2n+1

(2n + 1)!
∇2n+1, (5)

with λ being the expansion coordinate of the Taylor series. We emphasize that
throughout this paper the interpretation of the powers of ∇ depends on whether this
operator is acting on a scalar or a vector and in this context the following set of rules
should be obeyed:

∇2nû ≡ ∇(∇2n−2(∇ · û)), ∇2n+1û ≡ ∇2n(∇ · û)),

∇2nŵ ≡ ∇2nŵ, ∇2n+1ŵ ≡ ∇(∇2nŵ).

The next step is to invoke the kinematic sea bed condition (2), and after inserting
(4a, b) we obtain

cos((h + ẑ)∇)ŵ + sin((h + ẑ)∇)û =0, (6)
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which defines an implicit relation between û and ŵ.

Assuming a constant depth makes it easy to solve (6) to obtain the following
explicit expression for ŵ in terms of û,

ŵ = −tan((h + ẑ)∇)û. (7)

This involves the tan-operator, which is the infinite Taylor series operator defined by
the classical power series expressions for this function.

By inserting (7) in (4a, b), it is now possible to eliminate ŵ from the formulation of
the velocity field, and we obtain

u(x, y, z, t) = cos((z − ẑ)∇)û − sin((z − ẑ)∇) tan((h + ẑ)∇)û, (8a)

w(x, y, z, t) = −cos((z − ẑ)∇) tan((h + ẑ)∇)û − sin((z − ẑ)∇)û. (8b)

We have now derived two alternative exact solutions to the Laplace equation: one
option is (4a, b) and (6) expressed in terms of two velocity variables; the other is
(8a, b) expressed in terms of a single velocity variable. On the basis of either of these
expressions it is possible to recover exact linear wave theory (see § 2.2). On the other
hand, differences appear when truncated polynomial expansions are considered: in
§ 3 we demonstrate that there is a penalty for applying (8a, b) due to the presence
of the tan-operator. A polynomial expansion of this operator is known to have a
limited convergence radius, and this limitation can only be removed if the operator
is approximated by a fraction of polynomials (see § 4).

2.2. Recovering Stokes linear theory

On the basis of the general infinite series expressions (4a, b) and (8a, b), we can recover
Stokes linear theory for small-amplitude waves. To do this, we look for harmonic
solutions of the form

û(x, t) =B1e
iθ , ŵ(x, t) = iC1e

iθ , (9a, b)

where θ = ωt − kx, k is the wavenumber, ω the cyclic frequency and i the imaginary
unit. Hence in Fourier space we have ∇ = −ik, and according to (4a, b) and (6) this
leads to

u(x, z, t) = (cosh(k(z − ẑ))B1 + sinh(k(z − ẑ))C1)e
iθ , (10a)

w(x, z, t) = (sinh(k(z − ẑ))B1 + cosh(k(z − ẑ))C1)ie
iθ , (10b)

and

cosh(k(h + ẑ))C1 − sinh(k(h + ẑ))B1 = 0. (11)

We insert (11) in (10a, b) and obtain

u(x, z, t)

û
=

cosh(k(z + h))

cosh(k(ẑ + h))
,

w(x, z, t)

iû
=

sinh(k(z + h))

cosh(k(ẑ + h))
, (12a, b)

which can also be obtained directly from (8a, b). This defines the vertical variation of
the velocity field in terms of û and the variation is in agreement with Stokes linear
theory.

For later use, we may determine the linearized depth-averaged velocity

U (x, t) ≡ 1

h

0∫
−h

u(x, z, t)dz, (13)
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and express the velocity field in terms of this variable. The combination of (12a, b) and
(13) yields

u(x, z, t)

U
=

kh cosh(k(z + h))

sinh(kh)
,

w(x, z, t)

iU
=

kh sinh(k(z + h))

sinh(kh)
. (14a, b)

Finally, we note that if we continue the analysis and combine (12a, b) with the
linearized kinematic and dynamic surface conditions at z = 0 i.e.

∂u0

∂t
+ g∇η = 0,

∂η

∂t
− w0 = 0, (15a, b)

we recover the exact linear dispersion relation and the velocity expressions

u(x, z, t) = aω
cosh k(z + h)

sinh(kh)
eiθ , w(x, z, t) = aω

sinh k(z + h)

sinh(kh)
ieiθ, (16a, b)

where a is the wave amplitude.

3. Truncated series solutions in terms of a horizontal velocity variable
Boussinesq-type expressions for the velocity field can be derived by truncating the

infinite series expansions for the cos-, sin- and tan-operators. In this section, we
consider expressions in terms of a horizontal velocity variable and use (8a, b) as a
starting point for the derivations. At lowest order and at the next order this will
recover most of the Boussinesq profiles known from the literature, and in addition a
few high-order profiles will be discussed.

3.1. Analysis of profiles expressed in terms of û

On the basis of (8a, b), we can easily derive truncated series expansions to any order,
which will result in expressions of the form

u(x, y, z, t) =

N∑
n= 0

α2n ∇2nû, w(x, y, z, t) =

N∑
n =0

β2n+1 ∇2n+1û. (17a, b)

We emphasize that in (17a, b) the order of derivatives kept in w is always one higher
than the order kept in u, in contrast to traditional Boussinesq formulations, where it
is the opposite. The reason is that traditional Boussinesq formulations start from a
truncated series expansion of the velocity potential, giving expressions which exactly
satisfy zero vorticity but only approximately satisfy local continuity. By keeping the
extra derivatives in w in (17a, b), we always exactly satisfy local continuity but only
approximately satisfy zero vorticity. The expansion which we have chosen is in line
with linear shallow-water-wave theory and, for higher wavenumbers, it is somewhat
more accurate that the traditional expansion.

In the following we specify the solution containing up to O(∇5) terms, i.e. we use
N = 2 in (17a, b) with the parameters determined from an expansion of (8a, b), which
yields

α0 ≡ 1, α2 ≡ −1

2
(z − ẑ )2 − (h + ẑ)(z − ẑ), (18a, b)

α4 ≡ 1

24
(z − ẑ )4 +

(h + ẑ)

6
(z − ẑ )3 − (h + ẑ )3

3
(z − ẑ), (18c)
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β1 ≡ −(z + h), β3 ≡ 1

6
(z − ẑ )3 +

(h + ẑ)

2
(z − ẑ )2 − (h + ẑ )3

3
, (18d, e)

β5 ≡ − 1

120
(z − ẑ )5 − (h + ẑ)

24
(z − ẑ )4 +

(h + ẑ )3

6
(z − ẑ )2 − 2

15
(h + ẑ )5 . (18f )

Note that in Fourier space, (17a, b) and (18a–f ) and more generally (8a, b), agree with
a Taylor series expansion in kh of the target solution (12a, b).

Several classical profiles known from the literature appear as subsets of (17a, b)
and (18a–f ) with various choices of ẑ ≡ σh: Peregrine (1967) considered lower-
order formulations in terms of the surface velocity (i.e. σ = 0, N = 1), while Mei &
LeMéhauté (1966), Madsen & Mei (1969) and Mei (1983) focused on expansions
in terms of the bottom velocity (i.e. σ = −1, N = 1). Nwogu (1993) was the first
to use an arbitrary velocity datum in a lower-order formulation (N = 1), and he
considered the values σ = −0.5528 (leading to Padé (2,2) dispersion characteristics)
and σ = −0.5310 (optimizing dispersion up to kh = 3). The same values of σ were
used by Wei et al. (1995), while Chen & Liu (1995) preferred σ = −0.5215 (optimizing
dispersion and shoaling). These classical lower-order profiles have been summarized
in Dingemans (1997, Chap. 5.11.3), but while the original papers inluded only the
α0, α2, β1 terms from (18a, b, d), Dingemans included the β3 term from (18e), which
leads to a considerable improvement in the accuracy of the vertical velocity. Recently,
Madsen & Schäffer (1998, Chap. 5), extended Nwogu’s approach to the next order
(N = 2) and in this process they gave expressions for the horizontal velocity including
the α0, α2, α4 terms from (18a–f ). For this case, they recommended using the value
σ = −0.6249 which was determined by optimizing linear dispersion over the range
from kh = 0 to 6. Also Dingemans (1997, Chap. 5.11.5) provided a higher-order
extension of Nwogu’s equations, but unfortunately a number of typographical errors
appear in his differential equations as well as in his velocity profile: As an example
the constant-depth version of his equation 5.493 agrees neither with his equation
5.462 nor with the α2, α4 terms from (18).

3.1.1. Accuracy of velocity profiles

To quantify the accuracy of the vertical variation of the velocity components, we
introduce the measures

Fu(σ, kh) ≡

√√√√√1

h

0∫
−h

(
u(z)

u(0)
−

uS(z)

uS(0)

)2

dz, (19a)

Fw(σ, kh) ≡

√√√√√1

h

0∫
−h

(
w(z)

w(0)
−

wS(z)

wS(0)

)2

dz, (19b)

where the subscript S refers to the target velocities according to Stokes linear theory.
The velocity error Fu is shown as a function of σ for discrete values of kh in

figure 1(a–c). Figure 1(a) shows the lower-order result with N = 1 (i.e. including
second derivatives), figure 1(b) shows the higher order result with N = 2 and finally
figure 1(c) shows the case of N = 4. Each of the figures clearly indicates a range of
σ -values for which small errors occur even for relatively high kh-values: the optimal
values are σ = −0.562 for N = 1, σ = −0.672 for N = 2 and σ = −0.768 for N =4.
For these specific choices, a 2% error in Fu is reached at a limiting kh of 1.81, 4.75



Accuracy of velocity formulations for water waves 291

–1.0 –0.8 –0.6 –0.4 –0.2

1.0

1.5

2.0

(a) 0.04

0.03

0.02

0.01

0.5

Fu

r

–1.0 –0.8 –0.6 –0.4 –0.2

(b)
0.04

0.03

0.02

0.01

Fu

r

–1.0 –0.8 –0.6 –0.4 –0.2

(c) 0.04

0.03

0.02

0.01

Fu

r

5.0

4.0

3.5

3.0

2.5
2.0

1.5

1.0

10

9

8

7

6

5

4 3 2

1

Figure 1. The error Fu as a function of σ for discrete values of kh. (a) First-order (N = 1),
(b) second-order (N = 2) and (c) fourth-order (N = 4) velocity profiles based on § 3.1, i.e.
(17a, b) and (18a–f ).
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Figure 2. The error Fu as a function of kh for different orders of expansion. Velocity profile
based on § 3.1, i.e. (17a, b) and (18a–f ). (a) σ = 1, (b) σ = −0.5, (c) σ = −1.0.

and 8.71, respectively. The velocity error Fw has a similar variation and leads to the
optimal choices of σ = −0.635 for N = 1, σ = −0.717 for N =2 and σ = −0.770 for
N = 4, for which the 2% error in Fw is reached at kh equal to 3.25, 5.39 and 10.66.

Figure 2(a–c) shows Fu as a function of kh for the classical choices of σ = 0, −0.5
and −1. We notice from figure 2(a) that the case of σ = 0 leads to very poor accuracy
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σ N = 1 N = 2 N = 4 Convergence radius

0 0.63, 0.94 0.88, 1.15 1.12, 1.30 π/2
−0.1 0.69, 1.02 0.97, 1.25 1.25, 1.42 5π/9
−0.2 0.76, 1.12 1.09, 1.38 1.42, 1.59 5π/8
−0.3 0.87, 1.26 1.26, 1.56 1.65, 1.81 5π/7
−0.4 1.06, 1.46 1.54, 1.81 2.00, 2.12 5π/6
−0.5 1.52, 1.83 2.06, 2.23 2.58, 2.61 π
−0.6 1.71, 2.92 3.16, 3.10 3.56, 3.52 5π/4
−0.7 1.32, 2.67 4.37, 5.27 5.87, 5.81 5π/3
−0.8 1.16, 2.16 3.14, 4.45 8.50, 10.04 5π/2
−0.9 1.09, 1.99 2.73, 3.80 7.25, 8.51 5π
−1.0 1.07, 1.95 2.62, 3.63 6.73, 7.84 ∞

Table 1. Limiting wavenumbers khu, khw for which Fu, Fw exceed 2%. Based on velocity field
in terms of û, i.e. (17a, b) with (18a–f ).

no matter how many terms we include and the three curves (N =1, 2 and 4) intersect
at kh ≈ 1.57, beyond which the lower-order solution is better than the higher order.
In figure 2(b) with the choice of σ = −0.5 (approximately the value used by Nwogu
1993) the applicability is clearly increased, but again the three curves (N = 1, 2 and
4) intersect, this time at kh ≈ 3.1. The reason for the intersection of the curves in
figure 2(a, b) is a lack of convergence, which will be discussed in further detail below.
Finally, in figure 2(c) with σ = −1, we notice a continuous increase of accuracy for
an increasing number of terms in the expansion. On the other hand, the accuracies
achieved with N = 1 and N = 2 are quite poor. Table 1 summarizes the limiting
kh values corresponding to 2% errors for a range of σ -values. The corresponding
convergence criteria are also listed and they will be derived and discussed in the
following.

3.1.2. Convergence of power series

Expressions derived from (8a, b) become power series approximations in Fourier
space and hence they obey the classical convergence rules for Taylor series approxim-
ations. According to Hildebrand (1976, Chap. 10.7) (see also Baker & Graves-Morris
1981, Chap. 2.2, and Press et al. 1992 Chap. 5.1), we can state the following theorem:

Theorem. The Taylor series representation of a function has a radius of convergence
which will equal the distance from the expansion point to the nearest point where the
function encounters a singularity in the complex plane.

Hence, any expansion of the velocity field in terms of û will be governed by the
singularities or simple poles of the target function (12a, b). These occur as complex
roots of the denominator cosh(k(ẑ + h)) and with ẑ = σh we find

khRoots =
±i

(1 + σ )

(
π

2
+ nπ

)
, n= 0, 1, 2, . . . . (20a)

As the power series representations of (12a, b) do not capture any of the poles in
(20a), the convergence radius will be limited by

û : khLimit =
π

2(1 + σ )
. (20b)
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We note that equation (20b) has previously been derived by Kennedy et al. (2002)
on the basis of a direct analysis of the power series. When σ is decreased from 0
(still-water level), to −0.5 (mid-depth), to −0.75, and finally to −1 (bottom), the
convergence radius takes the values of π/2, π, 2π and eventually infinity. This is
why the curves in figures 2(a) and 2(b) intersect, while we find no intersection in
figure 2(c).

On the basis of (20b), we can now explain why the optimal choice of σ is pushed
further and further towards −1 for an increasing number of terms in the expansion
(figure 1a–c): from an extrapolation point of view, an expansion from the mid-depth
(i.e. σ = −0.5) has the advantage that the maximum distance covered by the
extrapolation (to the bottom and to the surface) becomes a minimum. As long as
the order of the expansion is low this is what really matters. With increasing orders
of the expansion, the accuracy is also increased but only within the convergence
radius. Hence to utilize the full capacity of a certain high-order expansion, the
convergence radius needs to be extended along with the order of the expansion. This
calls for a gradual shift of the expansion point towards the sea bottom. The limit of
σ = − 1, where the convergence radius is unbounded, is reached when the order of
the expansion goes to infinity.

3.2. Analysis of profiles expressed in terms of U

Many classical Boussinesq formulations have been expressed in terms of the depth-
averaged horizontal velocity (see e.g. the reviews by Whitham 1974; Mei 1983; Madsen
& Schäffer 1999). Generally, this variable involves the integral from the sea bottom
to the instantaneous free surface, but in the present context where we consider only
linear aspects of the velocity profiles, we only integrate up to the still-water datum.
We can derive expressions for the velocity profile expanded in terms of U in the
following way: insert (17a, b) in (13) and integrate to determine U in terms of û;
invert this expression by using successive approximations, obtain an expression for û

in terms of U and insert the result in (17a, b) to obtain

u(x, y, z, t) =

N∑
n =0

α2n∇2nU, w(x, y, z, t) =

N∑
n =0

β2n+1∇2n+1U, (21a, b)

with

α0 ≡ 1, α2 ≡ −h2

3
− hz − z2

2
, α4 ≡ − h4

45
+

h2z2

6
+

hz3

6
+

z4

24
, (22a, b, c)

β1 ≡ −(z + h), β3 ≡ z3

6
+

hz2

2
+

h2z

3
, β5 ≡ − z5

120
− hz4

24
− h2z3

18
+

h4z

45
. (22d, e, f )

Again the order of derivatives kept in w is one higher than the order kept in u, in
contrast to traditional Boussinesq formulations, where it is the opposite.

We note that lower-order expressions (with N = 1) were given by e.g. Boussinesq
(1872), Serre (1953), Peregrine (1967), Su & Gardner (1969), Benjamin et al. (1972),
Whitham (1973), Mei (1983), and Dingemans (1997). Of these, only Dingemans (in
eq. 5.462f, Chapter 5.11.3) included a β3 contribution, but it differs from (22) due
to typographical errors. Higher-order expressions with N = 2 appear in Dingemans
(1997) and in Madsen & Schäffer (1998, 1999) but without the β5 terms.

In Fourier space, (21a, b) and (22a–f ) agree with a Taylor series expansion in kh
of the target solution (14a, b), and high-order expansions valid on a constant depth
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Fu
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N =1

2 4
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Figure 3. The error Fu as a function of kh for different orders of expansion. Velocity profile
based on § 3.2, i.e. (21a, b) and (22a–f ).

N = 1 N = 2 N = 4 Convergence radius

1.13, 1.52 1.77, 1.98 2.36, 2.41 π

Table 2. Limiting wave numbers khu, khw for which Fu, Fw exceed 2%. Based on velocity
field in terms of U , i.e. (21a, b) with (22a–f ).

can easily be derived by using (14a, b) as a starting point. The velocity errors are
quantified by using (19a, b). Figure 3 shows the errors of Fu as a function of kh
for the three orders of expansion (N = 1, 2 and 4). We notice that the higher-order
curves intersect at kh ≈ 3.1 indicating a lack of convergence. According to the theorem
from § 3.1, convergence will not occur beyond the simple poles of the target function
(14a, b). These appear as the complex roots of the denominator sinh(kh) which are

khRoots = ±inπ, n= 0, 1, 2, . . . , (23a)

i.e. the convergence radius for the method becomes

U : khLimit = π. (23b)

Table 2 summarizes the limiting kh-values corresponding to 2% errors in u and w,
respectively. Note that the accuracy is slightly worse than achieved with σ = −0.5 in
table 1.

3.3. Analysis of profiles expressed in terms of a pseudo-velocity variable

As our last example of Boussinesq expansions expressed in terms of a horizontal
velocity variable, we discuss and analyse the approach by Gobbi et al. (2000). They
used a new dependent variable ũ which was defined as the weighted average of the
horizontal velocity at two distinct z-levels i.e.

ũ ≡ βu(za) + (1 − β)u(zb). (24)
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They expanded the velocity field in terms of this variable and obtained

u(x, y, z, t) =

N∑
n=0

α2n∇2nũ, w(x, y, z, t) =

N∑
n= 0

β2n+1∇2n+1ũ, (25a, b)

where

α0 ≡ 1, α2 ≡ h2

2

(
B −

(
1 +

z

h

)2
)

, (26a, b)

α4 ≡ h4

4

(
B2 − D

6
− B

(
1 +

z

h

)2

+
1

6

(
1 +

z

h

)4
)

, (26c)

β1 ≡ −(z + h), β3 ≡ h3

2

(
−B

(
1 +

z

h

)
+

1

3

(
1 +

z

h

)3
)

, (26d , e)

β5 = −h5

4

((
B2 − D

6

)(
1 +

z

h

)
− B

3

(
1 +

z

h

)3

+
1

30

(
1 +

z

h

)5
)

, (26f )

and

B ≡β

(
1+

za

h

)2

+ (1−β)

(
1+

zb

h

)2

, D ≡ β

(
1+

za

h

)4

+ (1−β)

(
1+

zb

h

)4

. (27a, b)

Again the order of derivatives kept in w is one higher than the order kept in u, in
contrast to traditional Boussinesq formulations, where it is the opposite. This means
that we have included a β5 term, although this was omitted by Gobbi et al. (2000).

For β = 1, (26a–f ) simplify to the coefficients given in (18a–f ), and for N = 1
we recover Nwogu’s (1993) lower-order formulation. Gobbi et al. (2000) introduced
two arbitrary levels to improve the linear dispersion relation and found that a Padé
(4,4) approximation to the target solution could be achieved (see figure 12) with the
choice of B =1/9 and D = 5/189. For this choice they solved for parameters β, za, zb.

With three unknowns and only two constraints this gave them an infinite number of
solutions, leading to

za

h
≡

(
1

9
−

√
8β

567(1 − β)
+

√
8

567β(1 − β)

)1/2

− 1, (28a)

zb

h
≡

(
1

9
−

√
8β

567(1 − β)

)1/2

− 1. (28b)

Only for β between 0.018 and 0.467, did both levels za and zb fall inside the water
column, and Gobbi & Kirby (1999) recommended the value β =0.2 for which (28a, b)
yields za = −0.41h and zb = −0.77h. This corresponds to a weighted-average level of
ẑ ≈ −0.7h.

In Fourier space, (25a, b) and (26a–f ) agree with a Taylor series expansion in kh
of the target solution

uS(z)

ũS

≡ cosh(k(z + h))

β cosh(k(za + h)) + (1 − β) cosh(k(zb + h))
. (29)
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Figure 4. (a) The error Fu and (b) Fw as a function of kh for different orders of expansion.
Velocity profile based on § 3.3, i.e. (25a, b) and (26a–f ).

While Gobbi et al. (2000) considered the case of N = 2, we use (29) as a starting
point for Taylor expansions to the order of N = 1, 2, 4 and 8. In this process we keep
the choice of B and D fixed at 1/9 and 5/189, respectively. From a linear dispersion
point of view, this may not be the optimal choice for N different from 2, but as
our objective here is merely to investigate the capacity of higher and lower order
expansions for internal kinematics, we have chosen to do so. The velocity errors are
quantified by using (19a, b).

Figure 4(a, b) shows the errors of Fu and Fw as functions of kh for the four orders
of expansions (N = 1, 2, 4 and 8). Note that the formulation by Gobbi et al. (2000)
corresponds to N =2 in figure 4(a) and N = 1 in figure 4(b) because they neglected
the β5 term in (26f ). This clearly makes their w-profile less accurate than their
u-profile, a fact which could also be observed in their figures 5 and 6. On the other
hand, the profiles obtained with N = 2 in u as well as in w are indeed very accurate.
From figure 4(a, b) we notice that the three high-order curves intersect at kh ≈ 5.88
indicating a lack of convergence.

Recently, Kennedy et al. (2002) discussed convergence in connection with the
velocity profile of Gobbi et al., but they did not give any explicit measures for it.
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N = 1 N = 2 N = 4 Convergence radius

1.42, 3.00 5.13, 5.58 5.76, 5.75 5.85

Table 3. Limiting wavenumbers khu, khw for which Fu, Fw exceed 2%. Based on velocity field
in terms of ũ, i.e. (25a, b) with (26a–f ).

Here we simply apply the theorem from § 3.1, according to which convergence will
not occur beyond the simple poles of the target function (29). These appear as the
complex roots of the denominator of (29) which leads to

ũ: khLimit = 5.85, (30)

i.e. in good agreement with the observed point of intersection.
Table 3 summarizes the limiting kh values corresponding to 2% errors in u and

w. For N = 1 there is little difference between table 3 and the best choices from the
corresponding column in table 1. However, for N = 2 (which is the case considered
by Gobbi et al.) the results in table 3 are clearly better than the results from the same
column in table 1. Finally, for N = 4, the best choices from table 1 are superior to
table 3. The reason for this is this following: by comparing (30) and (20b), we notice
that only for −0.73 � σ � −1 is the convergence radius larger in method (17a, b)
than in method (25a, b), and this implies that only very high-order expansions will be
more accurate with (17a, b) than with (25a, b).

4. Truncated series solutions in terms of û and ŵ

The formulations discussed so far have all been limited by a finite radius of
convergence, except for the case of (17a, b) with ẑ = −h. It turns out that the radius of
convergence can be significantly increased if we avoid a power series approximation
to the tan-operator in (7) and (8a, b). Hence, instead of the explicit determination and
elimination of ŵ, which is done in almost all previous Boussinesq formulations, we
keep ŵ as one of the expansion parameters and solve (4a, b) and (6) along with the
rest of the model equations. Such a concept was first proposed by Agnon et al. (1999)
using ẑ = 0, and later by Madsen et al. (2002a, b) using ẑ = σh.

4.1. Using Taylor series approximations for cos- and sin-operators

In this section, we consider Method I from Madsen et al. (2002b) and introduce power
series approximations to the cos- and sin-operators in (6) and (4a, b). By following
this approach instead of the one discussed in § 3.1, we can represent the tan-operator
in (7) by a rational function of a power series for the sin-operator divided by the
power series for the cos-operator. In Fourier space, this leads to the combination of
(10a, b) and (11) and after the elimination of C1 we obtain

u(x, z, t)

û
= cosh(k(z − ẑ)) + sinh(k(z − ẑ))

sinh(k(h + ẑ))

cosh(k(h + ẑ))
, (31a)

w(x, z, t)

iû
= sinh(k(z − ẑ)) + cosh(k(z − ẑ))

sinh(k(h + ẑ))

cosh(k(h + ẑ))
. (31b)
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Figure 5. (a) Pure imaginary roots of Taylor series expansions from kh = 0 of cosh(kh(1+σ )).
Horizontal axis: N , the order of the expansion including O(k2N ) terms. (b) Corresponding
complex roots. Order of expansion, N = 30 i.e. including O(k60) terms.

Applying truncated sin- and cos-operators corresponds to using truncated series
expansions of sinh and cosh in (31a, b). When infinite series expansions are applied,
(31a, b) are identical to the target functions (12a, b).

4.1.1. Convergence of series solutions

As discussed in § 3.1, the convergence of a power series is governed by the distance
to the nearest complex pole of the target function. If, however, the power series
is combined with or replaced by fractions of power series, which capture the
nearest singularities, the convergence radius of the approximation is extended to
the next singularity. In (31a, b) this happens due to the fraction containing the cosh-
denominator. With increasing orders of the approximation, (31a, b) will gradually
capture more and more poles, and in the asymptotic limit the convergence radius
becomes infinity.

Figure 5(a) shows the poles which can be captured as a function of N , the order
of the expansion: for N = 1 a pole at kh(1 + σ ) = ±i 1.4142 is found, approximating
the correct pole at ±i π/2. For N =2 the first pole is corrected to ±i 1.5925 and
a second pole is found at ±i 3.0764 (giving a poor estimate of the correct pole at
±i 3π/2). For N = 4 the first pole is further corrected to ±i 1.5708, while the second
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pole is corrected to ± i 4.2408. As seen from figure 5(a), a third pole appears for
N = 7, a fourth pole for N = 12 and a fifth pole for N =17.

In addition to the pure imaginary roots, the Taylor series expansions contain a
number of false roots which are distributed in the complex plane. This is illustrated
in figure 5(b), which shows all the complex roots for the case of N = 30.

4.1.2. Accuracy of velocity profiles

The velocity error Fu is shown as a function of σ for discrete values of kh in
figures 6(a) (N = 1), 6(b) (N = 2) and 6(c) (N = 4). Each of the figures clearly indicate
a range of σ -values for which small errors occur even for relatively high kh-values.
Note that in contrast to figure 1(a–c), the optimal choice of σ is no longer sensitive
to the order of the expansion and a position close to mid-depth is always preferable
from an accuracy point of view: based on Fu the optimal σ -values are found to be
σ = −0.519 for N =1, σ = −0.533 for N =2 and σ = −0.526 for N = 4 and for these
choices of σ , a 2% error in Fu is reached at a limiting kh of 2.85 (N =1), 6.14 (N =2)
and 14.87 (N = 4). Based on Fw the optimal values become σ = −0.488 for N =1,
σ = −0.484 for N = 2 and σ = −0.484 for N =4 and for these choices of σ , a 2%
error in Fw is reached at a limiting kh of 2.82 (N = 1), 6.84 (N = 2) and 16.57 (N = 4).
For the case of σ = 0, the 2% error limits in (Fu, Fw) are reached at kh = (0.98, 1.25)
for N =1, at kh = (1.73, 2.04) for N =2, and at kh = (3.33, 3.70) for N = 4.

In comparison with § 3.1, we note that for the case of N = 1 the improvement is
moderate, but for N =2 and N = 4 the kh-values have increased significantly. Table 4
summarizes the kh values corresponding to 2% errors in u and w for a range of
σ -values. In comparison with table 1, the accuracy is improved for most combinations
of σ and N , except for the interval of −0.8 � σ � −1, where the improvement is
either small or absent.

Figure 7 shows the error of Fu as a function of kh for the case of σ = −0.5 using
the three orders of expansions (N = 1, 2 and 4). We notice a continuous increase of
accuracy for an increasing number of terms in the expansion, and the curves do not
intersect due to the unlimited convergence radius.

4.2. Introducing Padé approximants in the kinematic bottom condition

It is well-known that Padé approximants generally have superior accuracy compared
to power series approximations and such techniques have succesfully been used in
the framework of Boussinesq theory to enhance the accuracy of the linear dispersion
relation, see e.g. Witting (1984), Madsen et al. (1992), Nwogu (1993) and Madsen
& Schäffer (1998). In the pursuit of differential equations with imbedded Padé-type
dispersion properties, a number of different procedures have been applied. Of these,
the method by Agnon et al. (1999) is the most general and direct. They start from
(4a, b) with ẑ = 0, and show that the accuracy of the kinematic bottom condition (6)
determines the accuracy of linear dispersion. To enhance this accuracy they introduce
a linear operator of the form

L(λ∇) ≡ 1 +

2N∑
n =1

δ2nλ
2n∇2n, (32)

and apply it to equation (6), which consequently is modified to

cos(λ∇)L(λ∇)ŵ + sin(λ∇)L(λ∇)û = 0, (33)
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Figure 6. The error Fu shown as a function of σ for discrete values of kh. (a) First-order
(N = 1), (b) second-order (N = 2) and (c) fourth-order (N = 4) velocity profiles based on § 4.1,
i.e. (4a, b) and (6), or (31a, b) in Fourier space.
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σ N = 1 N = 2 N = 4 Convergence radius

0 0.98, 1.25 1.73, 2.04 3.33, 3.70 ∞
−0.1 1.12, 1.44 1.99, 2.38 3.87, 4.34 ∞
−0.2 1.30, 1.69 2.36, 2.89 4.63, 5.29 ∞
−0.3 1.57, 2.07 2.93, 3.72 5.80, 6.86 ∞
−0.4 2.05, 2.58 3.91, 5.45 7.95, 10.44 ∞
−0.5 2.79, 2.81 5.78, 6.75 13.60, 16.19 ∞
−0.6 2.46, 2.58 5.65, 5.64 13.24, 13.21 ∞
−0.7 1.84, 2.30 4.65, 4.74 11.02, 11.02 ∞
−0.8 1.48, 2.10 3.86, 4.14 9.41, 9.44 ∞
−0.9 1.24, 1.99 3.19, 3.77 8.08, 8.33 ∞
−1.0 1.07, 1.95 2.62, 3.63 6.73, 7.84 ∞

Table 4. Limiting wavenumbers khu, khw for which Fu, Fw exceed 2%. Based on velocity field
in terms of û and ŵ, i.e. (4a, b) with (6), or (31a, b).
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Figure 7. The error Fu for σ = −0.5, shown as a function of kh for different orders of
expansion. Velocity profile based on § 4.1, i.e. (4a, b) and (6), or (31a, b) in Fourier space.

with λ= h. The δ2n coefficients in (32) are determined by truncating the infinite cos-
and sin-operators at 4N and 4N + 1, multiplying each of the series by (32), and
requiring that all terms with powers of 2N + 2 to 4N +1 vanish. For the case of
N = 1, this procedure yields

δ2 = 1
10

, δ4 = 1
120

, (34a, b)

cos(λ∇)L(λ∇) = 1 − 2λ2∇2

5
+ O(λ6∇6), (34c)

sin(λ∇)L(λ∇) = λ∇ − λ3∇3

15
+ O(λ7∇7), (34d)

while N = 2 leads to

δ2 = 1
18

, δ4 = 1
504

, δ6 = 1
15120

, δ8 = 1
362880

, (35a–d)
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Figure 8. The error Fu as a function of σ for discrete values of kh. (a) First-order (N = 1)
and (b) second-order (N = 2) velocity profiles based on § 4.2.

cos(λ∇)L(λ∇) = 1 − 4λ2∇2

9
+

λ4∇4

63
+ O(λ10∇10), (35e)

sin(λ∇)L(λ∇) = λ∇ − λ3∇3

9
+

λ5∇5

945
+ O(λ11∇11). (35f )

We note that in (34c, d) as well as in (35e, f ) the accuracy has become twice the
order of the terms included, which is a typical property of Padé approximants. With
this procedure, Agnon et al. (1999) enhanced the accuracy of the kinematic bottom
condition and achieved Padé (2,2) or Padé (4,4) dispersion characteristics for N =1
and N = 2, respectively. However, as they used ẑ =0, the underlying velocity profile
was actually quite inaccurate.

Recently, Madsen et al. (2002b), in their Method 2, generalized the approach to the
case of arbitrary ẑ, i.e. they use (4a, b) combined with (33) with λ=h + ẑ. In Fourier
space, the resulting velocity profile becomes similar to (31a, b) with the exception that
Taylor approximations are used only in the cosh/sinh functions with arguments z − ẑ,
while the approximations (34c, d) or (35e, f ) are used in functions with arguments
h + ẑ.

The resulting velocity error Fu is shown as a function of σ for discrete values
of kh in figure 8(a) (N = 1) and figure 8(b) (N = 2). For Fu as well as for Fw
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the optimal σ -values become σ = −0.469 (N = 1) and σ = −0.494 (N = 2) for which
the 2% errors are reached at kh equal to (3.03, 3.12) and (6.61, 6.62), respectively.
Note that these kh-values are only marginally larger than the ones obtained in §4.1,
and by comparing figure 8(a, b) with figure 6(a, b), we conclude that the increased
accuracy of the kinematic bottom condition has had little effect on the accuracy of
the velocity profile. However, as shown in figure 12 and discussed in §6, the improved
accuracy of the kinematic bottom condition has a major effect on the linear dispersion
relation.

4.3. Further introduction of Padé approximants by the use of pseudo-velocities

With the objective of introducing Padé approximants in the velocity profile, Madsen
et al. (2002a, b) introduced their Method 3, which will be summarized in the following.
The starting point is again (4a, b), but now the physical velocities û, ŵ are expanded in
terms of the pseudo-velocities û∗, ŵ

∗, which are defined by the relations û ≡ L(ẑ∇)û∗

and ŵ ≡ L(ẑ∇)ŵ∗, with the L-operator given by (32) and (34a, b) or (35a–d). Inserting
these definitions in (4a, b) yields

u(x, y, z, t) = cos((z − ẑ)∇)L(ẑ∇)û∗ + sin((z − ẑ)∇)L(ẑ∇)ŵ∗, (36a)

w(x, y, z, t) = cos((z − ẑ)∇)L(ẑ∇)ŵ∗ − sin((z − ẑ)∇)L(ẑ∇)û∗. (36b)

Note that at z = 0, where the arguments of the L-, cos- and sin-operators coincide, the
formal accuracy of (36a, b) will be doubled, in agreement with (34c, d) for N =1 and
with (35e, f ) for N =2. For other values of the z-coordinate, the formal accuracy of
(36a, b) is no higher than without the enhancement. However, the effective accuracy
of (36a, b) turns out to be superior to (4a, b) as demonstrated in the following.

We insert (32) in (36a, b), with (34a, b) for N = 1, and with (35a–d) for N =2, and
obtain

u(x, y, z, t) =

N∑
n=0

α2n∇2nû∗ +

N∑
n =0

β2n+1∇2n+1ŵ∗, (37a)

w(x, y, z, t) =

N∑
n=0

α2n∇2nŵ∗ −
N∑

n =0

β2n+1∇2n+1û∗, (37b)

where the first two coefficents are dientical to the Taylor coefficients from (5), i.e.
α0 ≡ 1, β1 ≡ (z − ẑ), while the other coefficients will depend on the order of the
truncation. The case of N =1 leads to

α2 ≡ − (z − ẑ )2

2
+

ẑ2

10
, β3 ≡ − (z − ẑ )3

6
+

ẑ2(z − ẑ)

10
, (38a, b)

while N = 2 leads to

α2 ≡ − (z − ẑ )2

2
+

ẑ2

18
, α4 ≡ (z − ẑ )4

24
− ẑ2(z − ẑ )2

36
+

ẑ4

504
, (39a, b)

β3 ≡ − (z − ẑ )3

6
+

ẑ2(z − ẑ)

18
, β5 ≡ (z − ẑ )5

120
− ẑ2(z − ẑ )3

108
+

ẑ4(z − ẑ)

504
. (39c, d)

At the sea bottom, Madsen et al. (2002a, b) manipulated the kinematic condition
with another linear operator to obtain the attractive relations given in (34c, d) for
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Figure 9. The error Fu as a function of σ for discrete values of kh. (a) First-order (N = 1)
and (b) second-order (N = 2) velocity profiles based on § 4.3, i.e. (37a, b) and (38a, b) for
(a) and (37a, b) and (39a–d) for (b).

N = 1 and in (35e, f ) for N = 2. For the case of N = 2 this resulted in(
1 − 4 λ2 ∇2

9
+

λ4 ∇4

63

)
ŵ∗ +

(
λ∇ − λ3 ∇3

9
+

λ5 ∇5

945

)
û∗ = 0, (40)

where λ ≡ h + ẑ.

4.3.1. Accuracy of velocity profiles

To compare the profiles of (37a, b) with Stokes target solution, we first solve (40)
in Fourier space to express ŵ∗ as a rational function involving û∗. Next, we eliminate
ŵ∗ from (37a, b) and express the velocity profiles in terms of û∗. Finally, we determine
the ratios u(z)/u(0) and w(z)/w(0) and insert in (19a, b). The velocity error Fu is
shown as a function of σ for discrete values of kh in figures 9(a) (N =1) and 9(b)
(N =2). As mentioned above, the enhancement technique has doubled the formal
accuracy of the kinematic bottom condition and of the profile at z = 0, and as a result
we notice a significant improvement in the velocity errors: figure 9(a) (with N = 1)
resembles figure 6(b) (with N =2), and figure 9(b) (with N = 2) resembles figure 6(c)
(with N = 4).
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N = 1 N = 2 N =2
σ (37a, b), (38a, b) (37a, b), (39a–d) § 5 (A)

0 1.13, 1.18 2.01, 2.02 4.38, 5.00
−0.1 1.32, 1.40 2.35, 2.37 5.24, 6.10
−0.2 1.60, 1.71 2.88, 2.90 6.52, 7.85
−0.3 2.10, 2.27 3.79, 3.81 8.63, 11.03
−0.4 3.23, 3.65 5.96, 6.04 12.55, 17.18
−0.5 4.71, 4.48 12.49, 12.22 16.03, 20.99
−0.6 3.84, 3.90 10.36, 10.36 10.94, 17.18
−0.7 3.27, 3.51 8.89, 8.89 7.86, 11.03
−0.8 2.60, 3.11 7.95, 7.97 6.17, 7.85
−0.9 2.12, 2.71 6.70, 6.98 5.11, 6.10
−1.0 1.80, 2.24 5.13, 5.58 4.39, 5.00

Table 5. Limiting wavenumbers khu, khw for which Fu, Fw exceed 2%. Based on the velocity
field from § 4.3 (last column from § 5, transformation A).

Fu

0.02

0.01

N =1 2

2 10 12 14

kh

0.03

4 6 8

Figure 10. The error Fu for σ = −0.5, as a function of kh for different orders of expansion.
Velocity profile based on § 4.3, i.e. (37a, b) with (38a, b) and (39a–d).

Table 5 summarizes the kh-values corresponding to 2% errors in u and w for a
range of σ -values (the last column lists results from the method derived in § 5). In the
interval 0 � σ � −0.4 the improvement over table 4 is actually quite moderate, but for
−0.4 > σ � −1 and especially near σ ≈ −0.5 we notice a significant improvement for
N = 1 and N = 2. For the case of σ = 0, the 2% error limits in (Fu, Fw) are reached at
kh =(1.13, 1.18) for N = 1, and at kh = (2.01, 2.02) for N = 2. For Fu as well as for Fw

the optimal σ -values become σ = −0.480 (N = 1) and σ = −0.489 (N = 2) for which
the 2% errors are reached at kh equal to (4.82, 4.64) and (12.59, 12.48), respectively.
This is 52% increase for N = 1 and 95% increase for N =2 in comparison with the
results obtained without the enhancement (see § 4.1).

Figure 10 shows the error of Fu as function of kh for the case of σ = −0.5. It is
clear that the curve for N = 1 lies between curves N = 2 and N = 1 in figure 7, while
the curve for N = 2 is only slightly less accurate than N = 4 in figure 7. The curves
for Fw are very similar and are not shown. Finally, it should be mentioned that the
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imbedded linear dispersion relation has superior accuracy as shown in figure 12, and
discussed in § 6.

5. A new formulation doubling the relative order of the vertical coordinate
Throughout §§ 3 and 4, formulations have been given on the form zn∇n, i.e. the

polynomial order of the vertical coordinate has been the same as the order of the hori-
zontal gradient operator. It turns out, however, to be possible to double the polynomial
order of z without increasing the order of the horizontal derivatives. In the following,
we derive a new formulation which is an extension to the method from § 4.3.

In § 4.3, we introduced the pseudo-velocity variables û∗ and ŵ∗, defined by the
relations û ≡ L(ẑ∇)û∗ and ŵ ≡ L(ẑ∇)ŵ∗, with the L-operator given by (32). As a
result the velocity field, for the case of N = 2, was given by (37a, b) and (39a–d), which
involved up to fifth-order powers in ∇ as well as fifth-order powers in z and ẑ. The
objective in the following is to modify these expressions by including up to tenth-order
powers of z and ẑ without increasing the order of the horizontal derivatives in (37a, b).

As a starting point, we introduce the pseudo-velocity potential Φ∗ defined by the
relation

Φ(x, y, z, t)=L(ẑ∇) Φ
∗(x, y, z, t). (41)

On a constant depth, which is considered throughout this paper, ẑ will be constant
and the L-operator will commute with the gradient operator. This leads to

u ≡ ∇Φ = L(ẑ∇)∇Φ
∗, w ≡ ∂Φ

∂z
= L(ẑ∇)

∂Φ∗

∂z
,

from which we obtain

û∗ ≡ ∇Φ̂∗, ŵ∗ ≡
(

∂Φ∗

∂z

)
z = ẑ

, (42a, b)

where Φ̂∗ ≡ (Φ∗ )z = ẑ. Furthermore, by inserting (41) in (1) we find that Φ∗ satisfies
the Laplace equation, and that we can apply the Laplace operator successively to
replace horizontal by vertical differentiations to obtain

∇2mΦ∗ = (−1)m
∂2mΦ∗

∂z2m
. (43)

The next step is to utilize the kinematic bottom condition (40), which defines a
high-order relationship between û∗ and ŵ∗. We insert (42a, b) and (43) in (40) and
obtain(

∂Φ∗

∂z
+

4 λ2

9

∂3Φ∗

∂z3
+

λ4

63

∂5Φ∗

∂z5
− λ

∂2Φ∗

∂z2
− λ3

9

∂4Φ∗

∂z4
− λ5

945

∂6Φ∗

∂z6

)
z = ẑ

=0. (44)

Now we look for solutions to this equation of the form

Φ
∗(x, y, z, t) =

N∑
n= 0

(z + h )n Φn(x, y, t), (45a)

which means that

∂mΦ∗

∂zm
=

N∑
n= m

Φn

n!

(n − m)!
(z + h )n−m . (45b)

By inserting (45b) in (44), and requiring that this equation is satisfied for all values of
ẑ, we find that only even integer numbers from 0 to 10 are acceptable values for n and
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that (44) is satisfied exactly for any choice of the remaining six coefficients φ0, φ2, φ4,
φ6, φ8, φ10. To determine these six coefficients, we first use (42b) and (43) to establish
expressions for ŵ∗, ∇2ŵ∗, ∇4ŵ∗ and Φ̂∗, ∇2Φ̂∗, ∇4Φ̂∗ in terms of vertical derivatives
of the pseudo potential, insert (45b) and solve the resulting linear algebraic system to
obtain

φ0 =

(
3840 − 975 λ2 ∇2 + 20λ4∇4

3840

)
Φ̂

∗ −
(

2895λ − 185λ3∇2 + λ5 ∇4

3840

)
ŵ∗, (46a)

φ2 =

(
561λ∇2 − 18 λ3∇4

768λ

)
Φ̂

∗
+

(
945 − 141λ2∇2 + λ4∇4

768λ

)
ŵ∗, (46b)

φ4 = −
(

315λ∇2 − 16 λ3∇4

384 λ3

)
Φ̂

∗ −
(

315 − 105 λ2∇2 + λ4∇4

384 λ3

)
ŵ∗, (46c)

φ6 =

(
189λ∇2 − 14λ3∇4

384 λ5

)
Φ̂

∗
+

(
189 − 77λ2∇2 + λ4∇4

384 λ5

)
ŵ∗, (46d)

φ8 = −
(

135λ∇2 − 12 λ3∇4

768 λ7

)
Φ̂

∗ −
(

135 − 57 λ2∇2 + λ4∇4

768 λ7

)
ŵ∗, (46e)

φ10 =

(
105λ∇2 − 10 λ3∇4

3840 λ9

)
Φ̂

∗
+

(
105 − 45 λ2∇2 + λ4∇4

3840 λ9

)
ŵ∗, (46f )

where λ= h + ẑ. In combination with (45a) this defines the pseudo-potential in terms
of fourth-order spatial derivatives and tenth-order powers of the vertical coordinate.

The remaining problem is to transform the pseudo-velocity potential into a physical
velocity potential. We shall make this transformation in two ways, resulting in slightly
different results.

A. Transformation using a modified L-operator

The most obvious transformation is based on (41), where the L-operator is defined
by (32) with (35a–d) for the case of N = 2. Again, we apply the Laplace operator
successively to replace horizontal by vertical differentiations, by which (41) is modified
to

Φ =

(
1 − ẑ2

18

∂2

∂z2
+

ẑ4

504

∂4

∂z4
− ẑ6

15120

∂6

∂z6
+

ẑ8

362880

∂8

∂z8

)
Φ

∗ . (47)

Next, we insert (45a) in (47) and obtain

Φ(x, y, z, t) = φ0 + γ2 φ2 + γ4 φ4 + γ6 φ6 + γ8 φ8 + γ10 φ10, (48)

where

γ2 =
(
ζ 2 − 1

9
ẑ2

)
, (49a)

γ4 =
(
ζ 4 − 2

3
ẑ2ζ 2 + 1

21
ẑ4

)
, (49b)

γ6 =
(
ζ 6 − 5

3
ẑ2ζ 4 + 5

7
ẑ4ζ 2 − 1

21
ẑ6

)
, (49c)

γ8 =
(
ζ 8 − 28

9
ẑ2ζ 6 + 10

3
ẑ4ζ 4 − 4

3
ẑ6ζ 2 + 1

9
ẑ8

)
, (49d)

γ10 =
(
ζ 10 − 5ẑ2ζ 8 + 10ẑ4ζ 6 − 10ẑ6ζ 4 + 5ẑ8ζ 2

)
, (49e)

with ζ ≡ z + h, and where φ0, φ2, φ4, φ6, φ8, φ10 are given by (46a–f ).
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B. Transformation involving a vertical shift

In the following, we provide an alternative transformation procedure with the
objective of obtaining exactly the same dispersion relation as in § 4.3. Note that
for brevity we leave out the x, y and t arguments of the functions but keep the
z-arguments for clarity. The starting point is (4a) given in terms of the velocity
potential, i.e.

Φ(z) = cos((z − ẑ)∇)Φ(ẑ) +
sin((z − ẑ)∇)

∇ w(ẑ). (50)

Now, we replace ẑ by z + ẑ, which modifies (50) to

Φ(z) = cos(ẑ∇)Φ(z + ẑ) − sin(ẑ∇)

∇ w(z + ẑ). (51)

Note that (51) involves the z-variation of Φ on both sides of the equation, and it
describes a transformation including a vertical shift of ẑ.

The next step is to insert (41) in the right-hand side of (51). With the arguments
of the cos-, sin- and L-operators now being identical, we can, according to (35e, f ),
write (51) as

Φ(z) =

(
1 − 4ẑ2∇2

9
+

ẑ4∇4

63

)
Φ

∗(z + ẑ) −
(

ẑ − ẑ3∇2

9
+

ẑ5∇4

945

)
w∗(z + ẑ). (52)

This equation guarantees that the dispersion relation will be identical to the one from
§ 4.3. To prove this statement, we differentiate (52) with x to obtain u(z) and with
z to obtain w(z). At z = 0, the resulting expressions for u(0) and w(0) in terms of
u∗(ẑ) and w∗(ẑ) are identical to the results obtained from (37a, b) and (39a–d), and in
combination with the mutual kinematic bottom condition (40) this leads to identical
dispersion relations.

The final step in the transformation procedure is to use the Laplace operator
successively to replace horizontal by vertical differentiations, and by inserting (42b)
and (43) in (52) we obtain

Φ(z) =

{(
1 +

4ẑ2

9

∂2

∂z2
+

ẑ4

63

∂4

∂z4
− ẑ

∂

∂z
− ẑ3

9

∂3

∂z3
− ẑ5

945

∂5

∂z5

)
Φ

∗
}

z→z+ẑ

. (53)

This defines the new transformation from pseudo- to physical variables: we insert
(45a) in (53), perform the vertical differentiations, and finally make a vertical shift
from z to z+ ẑ. The result is an expression for the physical velocity potential, which is
identical to (48) with the only exception that the γ10 coefficient from (49e) is modified
to

γ̃10 = γ10 − ẑ10. (54)

5.1. Accuracy of velocity profiles

The resulting velocity field can be expressed by

u(x, y, z, t) ≡ ∇Φ =

2∑
n =0

α2n∇2nû∗ +

2∑
n= 0

α2n+1∇2n+1ŵ∗, (55a)

w(x, y, z, t) ≡ ∂Φ

∂z
=

2∑
n =0

β2n∇2nŵ∗ +

2∑
n =0

β2n+1∇2n+1û∗, (55b)
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Figure 11. (a) The error Fu and (b) Fw as functions of σ for discrete values of kh.
Second-order (N = 2) velocity profile based on § 5.2, i.e. (48) with (49a–e) and (46a–f ).

which involves algebraic but rather lengthy expressions for αj , βj with j = 0, 1, 2,

3, 4, 5. Note that (55a, b) involve 12 different velocity coefficients, in contrast to (37a, b)
which (with N = 2) involve only six different coefficients. The order of the spatial
derivatives is, however, the same in (37a, b) and (55a, b).

It turns out that, whether we use transformation A leading to (49a–e), or transform-
ation B replacing (49e) by (54), it makes no difference to the vertical velocity w(z),
while the horizontal velocity u(z) is changed accordingly. In both cases, however, the
formal accuracy of u(z)/u(0) is O(k10h10) compared to Stokes target solution, while
it is O(k8 h8) for the vertical velocity ratio.

Figure 11(a, b) shows the computed errors Fu and Fw defined by (19a, b) for the case
of transformation A, and the optimal choice of σ is found to be −0.48 and −0.500,
respectively. For the case of transformation B, figure 11(a) is slightly modified as the
optimal choice of σ becomes −0.500, but the overall accuracies are very similar to
figure 11(a).

The last column in table 5 summarizes the kh-values corresponding to 2% errors
in u and w for a range of σ -values using transformation A. For σ = −0.49 the 2%
errors are reached at kh = (16.24, 20.96). This is a 30% increase for Fu and a 67%
increase for Fw in comparison with the method from § 4.3, and it is superior to any
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of the other N = 2 methods. Another attraction is the relatively high accuracy which
can be achieved for the case of σ = 0, for which the 2% error limits in (Fu, Fw) are
reached at kh = (4.38, 5.0). These values are outstanding compared to other methods
based on σ = 0.

The accuracy of the linear dispersion relation, corresponding to the two diferent
transformations will be discussed in § 6.

6. Involving the linearized boundary conditions at the still-wates level
Throughout §§ 3 to 5 we have ignored the influence of the dynamic and kinematic

boundary conditions at the surface in order to focus on the accuracy and convergence
of various power series solutions satisfying the Laplace equation and the kinematic
bottom condition. With this objective we have analysed the shape of the velocity
profiles scaled relative to the horizontal and vertical velocities at still-wates level
(z = 0), but until now we have not considered the accuracy of these scaling velocities
compared to linear theory. Consequently, §§ 3 to 5 provide necessary but not sufficient
measures of the range of applicability of a certain formulation.

To establish the linear accuracy in an absolute sense we need to involve the
linearized surface boundary conditions at z = 0, given by (15a, b):

∂u0

∂t
+ g∇η = 0,

∂η

∂t
− w0 = 0.

A linear Fourier analysis of these equations combined with the velocity formulations
from §§ 3 to 5, leads to the determination of the imbedded linear dispersion relation
and the amplitude of the horizontal still-water velocity expressed in terms of the
amplitude of the surface elevation.

We illustrate the procedure for the methods decsribed in § 3.1. The starting point is
a harmonic solution of the form

η(x, t) = aeiθ , û(x, t) = B1e
iθ , θ = ωt − kx,

and by the use of (17a, b) we find

u0(x, t) = B1Λue
iθ , w0(x, t) = B1Λw ieiθ ,

where Λu, Λw depend upon the order of the expansion used in (17a, b) and are
functions of kh and σ. Inserting this into (15a, b) leads to solutions for the dispersion
relation and the velocity coefficient,

ω2

ghk2
=

Λw

khΛu

, B1 =
aω

Λw

,

from which we obtain

u0(x, t) =

(
aωΛu

Λw

)
eiθ =

(
gka

ω

)
eiθ , w0(x, t) = aωieiθ .

Hence we can conclude that the accuracy of the SWL velocities is determined entirely
by the linear dispersion relation for the relevant set of Boussinesq equations. Similar
conclusions can be made on the basis of the other velocity formulations in §§ 3 to 5.

In figure 12, we present the accuracy of the linear dispersion relation as the squared
ratio of the celerity to Stokes linear target solution, and we plot this ratio as a
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Figure 12. The square of the linear phase celerity divided by the target solution. All
formulations expanded to N =2 (i.e. including fifth derivatives). Curve 3.1: § 3.1 with σ =
−0.672; 3.3: § 3.3; 4.1: § 4.1 with σ = −0.5; 4.2: § 4.2 with σ = −0.5; 4.3: § 4.3 with σ = −0.5;
5(A): § 5, transformation A, with σ = −0.49; 5(B): § 5 (transformation B) with σ = −0.5
(identical to 4.3).

function of kh. Only the methods of order 2 (i.e. with fifth derivatives) from §§ 3.1,
3.3, 4.1, 4.2, 4.3, and 5 are included. The method from § 3.3 corresponds to a Padé
(4,4) expansion of the target solution, while the other methods contain fractions of
eighth-order polynomials divided by tenth-order polynomials without being exactly a
Padé (8,10) expansion. We notice that the new method from § 5 with transformation
A has a dispersion relation which is slightly more accurate than the one from § 4.2.
When the method from § 5 is combined with transformation B, it has exactly the
same dispersion relation as the one from § 4.3, and both methods have errors in c2 of
less than 2% for kh as high as 25 for σ = −0.5.

7. Involving the exact boundary conditions at the free surface
To obtain the full picture of the accuracy of a certain method, it must be tested

on the fully nonlinear water wave problem. This involves the exact dynamic and
kinematic boundary conditions at the free surface. In the following we present a
spectral solution for steady nonlinear waves on a constant depth in one horizontal
dimension, and the analysis is limited to the two methods from §§ 4.3 and 5, which have
been shown to be superior to other alternatives. For both methods it is advantageous
to apply a two-step approach for nonlinear waves. The first step describes the region
between the moving free surface and the still-water datum (SWL) by using (4a, b)
with ẑ = 0, which leads to

u(x, z) =

(
1 − z2∇2

2
+

z4∇4

24

)
u0 +

(
z∇ − z3∇3

6
+

z5∇5

120

)
w0, (56a)

w(x, z) =

(
1 − z2∇2

2
+

z4∇4

24

)
w0 −

(
z∇ − z3∇3

6
+

z5∇5

120

)
u0, (56b)

where 0 � z � η. The second step describes the region from the SWL to the sea
bottom, where the method from § 4.3 is based on (37a, b) combined with (40), while
the method from § 5 (case B) is based on (53) and (45a) combined with (46a–f ). In
both methods the velocities at the SWL are connected to the pseudo-velocities at
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z = ẑ through (36a, b) with z =0, which leads to

u0 =

(
1 − 4ẑ2∇2

9
+

ẑ4∇4

63

)
û∗ −

(
ẑ∇ − ẑ3∇3

9
+

ẑ5∇5

945

)
ŵ∗, (57a)

w0 =

(
1 − 4ẑ2∇2

9
+

ẑ4∇4

63

)
ŵ∗ +

(
ẑ∇ − ẑ3∇3

9
+

ẑ5∇5

945

)
û∗. (57b)

Furthermore the two methods share the same formulation (40) of the kinematic
bottom condition. Now (56a, b) with z = η defines the connection between the surface
velocities ũ, w̃ and the SWL velocities u0, w0 while (57a, b) defines the connection
between u0, w0 and û∗, ŵ∗.

For the case of steady nonlinear waves, we can use the transformation

∂

∂t
= −c

∂

∂x
,

where c is the constant wave celerity. In this case, the kinematic and dynamic free-
surface conditions simplify to

−w̃ + (ũ − c) ηx = 0, −cũ + gη +
ũ2

2
+

w̃2

2
= R, (58a, b)

where R is the Bernoulli constant. The dynamic pressure (in excess of the hydrostatic
part) can be determined by

p+(x, z)

ρ
= cu(x, z) − 1

2

(
u(x, z )2 + w(x, z )2

)
. (59)

We look for spectral solutions to the problem, and expand the surface elevation and
the velocity variables at ẑ in terms of the Fourier series

η(x) =

M∑
j =1

Aj cos(jkx), (60a)

û∗(x) =

M∑
j = 1

Bj cos(jkx), ŵ∗(x) =

M∑
j =1

Cj sin(jkx). (60b, c)

A connection between the Cj and the Bj coefficients is determined by using the
kinematic bottom condition (40). Given the three inputs H (wave height), h (water
depth), and L (wavelength), and assuming zero mean Eulerian velocity, there are two
kinematic constraints,

H = η(0) − η

(
L

2

)
, c =

L

T
,

plus the free-surface boundary conditions (58a, b). The dynamic surface condition
is applied at M + 1 equally spaced points from the wave trough to the wave crest,
while the kinematic condition is applied at M staggered points (mid-way between the
others). This gives 2M + 3 nonlinear equations for the unknowns T (wave period), c,
R and the coefficients Aj and Bj . The system is readily solved using Newton’s method
with linear theory as the initial conditions.

To establish a reference solution (similar to the stream function solution presented
by e.g. Fenton 1988) we use the above technique and solve the fully dispersive problem
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Figure 13. Vertical distribution of (a) the horizontal velocity under the wave crest, (b) the
vertical velocity at x/L = 0.15 and (c) the dynamic pressure under the wave crest. Steady deep
water wave with kh = 14 and H/L = 0.13. Full line: Exact stream function solution. Dashed
line: Method from Section 5(A). Thin full line: Method from Section 4.3.

by replacing (56a, b), (57a, b) and (40) by

u(x, z) =

M∑
j=1

Bj

cosh(jk(z + h))

cosh(jkh)
cos(jkx), (61a)
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kh Fu Fw Fp+

(a) 6 0.00440 0.00356 0.00510
9 0.01034 0.00967 0.01220

12 0.01724 0.01681 0.02052
16 0.02635 0.02545 0.03155

(b) 6 0.00165 0.00042 0.00200
9 0.00498 0.00189 0.00605

12 0.01025 0.00429 0.01246
16 0.01964 0.00775 0.02403

Table 6. Depth-integrated errors for u,w, p+ for nonlinear steady waves. H/L = 0.13. (a)
Method from § 4.3 and (b) method from § 5 with σ = −0.5.

w(x, z) =

M∑
j=1

Bj

sinh(jk(z + h))

cosh(jkh)
sin(jkx).

(61b)

As an example which stretches the two Boussinesq methods to their limits,
we consider the strongly nonlinear case of H/L =0.13 and kh = 14. The vertical
distributions of the horizontal velocity (at the wave crest) and of the vertical velocity
(at the section where it is maximum) are shown in figure 13(a, b), while the dynamic
pressure distribution under the wave crest is shown in figure 13(c). The reference
solutions (thick lines) are compared to the two Boussinesq methods from § 4.3 (dashed
lines) and § 5 (thin lines), both applied with σ = −0.5. We note that above the still-
water level the two Boussinesq methods are identical and in excellent agreement with
the reference solution. Below the still-water level, the method from § 5 is generally
more accurate than the one from § 4.3.

To quantify the accuracy we use the error measures from (19a, b) with the
modification that the integration is continued up to the free surface. A similar
error measure is determined for the dynamic pressure given by (59). The errors for
the pressure and the horizontal velocities are determined under the wave crest, while
the errors for the vertical velocity are determined at the section x/L =0.15. The results
are shown in tables 6(a) and 6(b) for the methods from §§ 4.3 and 5, respectively.

8. Summary and conclusions
The objective of this paper has been to discuss and analyse the accuracy of

various velocity formulations for water waves in the framework of Boussinesq theory.
Throughout the paper, we have focused on the problem of finding truncated series
solutions to the Laplace equation with a kinematic condition at the horizontal sea
bed. The convergence and accuracy of the resulting expressions has been analysed and
compared with the target cosh- and sinh-functions from linear wave theory. Generally,
we have investigated the various formulations in a first-order form (with third-order
derivatives), a second-order form (with fifth-order derivatives) and a fourth-order
form (with ninth-order derivatives).

First, in § 3.1, we have considered series expansions in terms of the horizontal
velocity variable at an arbitrary z-level, which can be varied from the sea bottom
to the still-water datum. Second, in § 3.2, we have considered expansions in terms of
the depth-averaged velocity. Third, in § 3.3, we have analysed the use of a horizontal
pseudo-velocity determined by interpolation between velocities at two arbitary z-levels.
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N = 2 methods Based on σ = 0 Based on σuw σuw

§ 3.1 0.88, 1.15 4.75, 5.39 −0.672
§ 3.2 – 1.77, 1.98 –
§ 3.3 – 5.13, 5.58 –
§ 4.1 1.73, 2.04 6.14, 6.84 −0.533
§ 4.2 2.01, 2.02 6.61, 6.62 −0.494
§ 4.3 2.01, 2.02 12.59, 12.48 −0.489
§ 5 4.38, 5.00 16.22, 20.99 −0.490

Table 7. Limiting wavenumbers khu, khw for which Fu, Fw exceed 2%.

The different options covered in § 3 include most of the conventional formulations
from the literature, and we can conclude that many of these have a relatively poor
accuracy and applicability.

The reason for this rather disappointing performance is the polynomial represent-
ation of the tan-operator, which appears in the kinematic bottom condition when
the vertical velocity variable is explicitly expressed in terms of the horizontal one.
Due to the inherent pole of this operator, polynomial representations result in a
limited convergence radius, which makes it difficult to improve accuracy even with
high-order formulations. However, by avoiding the explicit elimination of the vertical
particle velocity at the expansion level and keeping it as one of the unknowns, the
tan-operator can be represented by a rational function of two polynomials and this
effectively makes the convergence radius grow with the number of terms included.

Three such methods (derived recently by Madsen et al. 2002b) are investigated
in §§ 4.1, 4.2 and 4.3, and they all have unlimited convergence radius. Of these, the
method in § 4.3 is by far the most accurate as it incorporates Padé approximants in
the kinematic bottom condition as well as at z = 0. As a consequence, the accuracy is
significantly improved and with fifth-order derivatives (N = 2) this method is almost
as accurate as the one from § 4.1 with ninth-order derivatives (N = 4).

Further improvement of accuracy is obtained in § 5, where a new formulation is
derived as an extension to the method from § 4.3. This method doubles the power
of the vertical coordinate without increasing the order of horizontal derivatives, and
the resulting velocity profiles, with up to fifth derivatives in the horizontal and with
polynomial powers in z up to ten, are highly accurate.

In table 7, we summarize the accuracy of the different methods from §§ 3 to 5 for
the case of N =2 (i.e. including fifth derivatives). The second and third columns show
the limiting wavenumbers kh for which Fu, Fw exceed 2% using σ = 0 and σ = σuw

respectively. The values of σuw are given in the last column of table 7. We note that
these values are a compromise between the optimal σu determined on the basis of
the u-profiles and σw determined from the w-profiles. These optimal levels are not
necessarily identical as show below:

σu
3.1 = −0.672, σw

3.1 = −0.717; σu
4.1 = −0.533, σw

4.1 = −0.484; σu
4.2 = −0.494,

σw
4.2 = −0.494; σu

4.3 = −0.489, σw
4.3 = −0.489; σu

5 = −0.480, σw
5 = −0.500.

In §§ 3 to 5, we have ignored the boundary conditions at the free surface in
order to discuss the quality of the velocity profiles without involving the imbedded
linear dispersion relation or nonlinear effects from the moving free surface. In § 6,
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however, the accuracy of the linear dispersion corresponding to the different methods
is summarized. On this basis and on the basis of table 7, it can be concluded that
from a linear point of view the methods discussed in §§ 4.3 and 5 are superior.

In order to investigate to what extent the accuracy carries over to the case of
nonlinear waves, we present a spectral solution for steady nonlinear waves in § 7. The
vertical distribution of the horizontal velocity, the vertical velocity and the dynamic
pressure is compared to a stream function solution. Based on a 2% error criterion, it
is found that the methods from §§ 4.3 and 5 can be applied for highly nonlinear
waves (H/L = 0.13) up to kh ≈ 12 and kh ≈ 16, respectively. In shallow water
the difficult part of the velocity profile is above the still-water level and in this region
the two methods from §§ 4.3 and 5 are identical according to (56a, b). In Madsen et
al. (2002a) we have previously demonstrated the accuracy of this approach to cover
the case of highly nonlinear solitary waves.

It should be mentioned that throughout this paper we have assumed a constant
depth in order to keep the analyses as simple as possible. However, except for the
new method in § 5, all other methods have previously been extended and tested on
a mildly sloping bottom. This aspect is beyond the scope of the present paper but
readers are referred to e.g. Agnon et al. (1999) and Madsen et al. (2002a, b).

One reviewer has raised the question of to what extent the various theories presented
in this paper should really be considered as Boussinesq theories? This is an interesting
question as there is no doubt that most of today’s state-of-the-art formulations are
rather different and a lot more complicated than what was originally proposed by
Boussinesq (1872).

First, an important difference is the fact that the parameter of non-linearity (ε) is no
longer assumed to be small and of the same order as the dispersion parameter (µ2).
This change has made it possible to consider higher waves, and waves interacting
with currents including Doppler shift (see e.g. Madsen & Schäffer 1998).

Second, a dramatic change has been the extension of the linear dispersion relation,
which has made it possible to consider waves in deeper water and to extend
the applicability in terms of µ( = kh) from approximately 0.5 to several times π
(the traditional deep-water limit).

Third, there are differences with respect to the truncated velocity field: In line with
Boussinesq (1872), most state-of-the-art formulations exactly satisfy zero vorticity but
only approximately satisfy local continuity. However, we recommend the alternative
to exactly satisfy local continuity but only approximately satisfy zero vorticity. And
to complete the picture, the more advanced methods (described in §§ 4 and 5) satisfy
neither local continuity nor zero vorticity exactly.

Fourth, there is the appearance of the governing equations: in all the methods
described in § 3, the vertical velocity variable is eliminated and the resulting mass and
momentum equations are given in terms of the surface elevation and a horizontal
velocity variable. However, the methods described in §§ 4 and 5 are quite different as
they maintain the vertical velocity variable as one of the unknowns and result in six
(or more) coupled equations rather than the usual two.

So what do these different methods really have in common with the original
Boussinesq approach? They all remove the vertical coordinate from the governing
equations by using truncated power series expansions which replace vertical differ-
entiation with horizontal differentiation and introduces relatively high powers (third
order as a minimum) of the horizontal gradient operator into the governing equations.
For this reason we have chosen to consider the variety of methods described in this
paper to belong to the family of Boussinesq-type methods.
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Finally, it should be mentioned that the present work can be considered in the
broader context of approximation to irrotational flow, rather than just Boussinesq
modelling of water waves. By using the techniques described in this paper, many
irrotational flows (and axisymmetric flows) can be studied to high order taking out
one dimension. We present this idea, which was proposed to us by Professor Howell
Peregrine, but we do not pursue it further here, as it is beyond the scope of the
present paper.

This work was partly financed by the Danish Technical Research Council (STVF
grant no. 9801635). Inspiring discussions with Dr Hemming Schäffer and Mr Henrik
Bredmose are also acknowledged.
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